A mathematical representation of electromagnetic wave is given by the two equations $E = E_{max}\,\, cos (kx -\omega\,t)$ and $B = B_{max} cos\, (kx -\omega\,t),$ where $E_{max}$ is the amplitude of the electric field and $B_{max}$ is the amplitude of the magnetic field. What is the intensity in terms of $E_{max}$ and universal constants $μ_0, \in_0.$

  • A

    $I=\frac{1}{2}\sqrt {\frac{\mu_0}{\in_0}E^2_{max}}$

  • B

    $I=\frac{1}{2}\sqrt {\frac{\in_0}{\mu_0}E^2_{max}}$

  • C

    $I=2\sqrt {\frac{\mu_0}{\in_0}E^2_{max}}$

  • D

    $I=2\sqrt {\frac{\in_0}{\mu_0}E^2_{max}}$

Similar Questions

Ozone layer blocks the radiation of wavelength

  • [AIPMT 1999]

What is force exerted on surface having area of $10\, cm^2$ due to radiation of Sun ? 

Show that the radiation pressure exerted by an $EM$ wave of intensity $I$ on a surface kept in vacuum is $\frac{I}{c}$.

In an electromagnetic wave the energy density associated with magnetic field will be

The electric fields of two plane electromagnetic plane waves in vacuum are given by

$\overrightarrow{\mathrm{E}}_{1}=\mathrm{E}_{0} \hat{\mathrm{j}} \cos (\omega \mathrm{t}-\mathrm{kx})$ and

$\overrightarrow{\mathrm{E}}_{2}=\mathrm{E}_{0} \hat{\mathrm{k}} \cos (\omega \mathrm{t}-\mathrm{ky})$

At $t=0,$ a particle of charge $q$ is at origin with a velocity $\overrightarrow{\mathrm{v}}=0.8 \mathrm{c} \hat{\mathrm{j}}$ ($c$ is the speed of light in vacuum). The instantaneous force experienced by the particle is 

  • [JEE MAIN 2020]